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Chapter 1

Rapid Review of Kinematics

1.1 Introduction

In this chapter we provide a brief review of basic kinematics that will be useful to derive the dy-
namics of robots in the next chapter and to understand the subsequent control chapters. We discuss
rigid body motions, rotations and translations, described by so-called Homogeneous Transfor-
mations. These are used to describe the Forward Kinematics, both position and velocity
kinematics. We also touch briefly on the problem of Inverse Kinematics. Finally, we will derive
the manipulator Jacobian which gives the velocity kinematics.

We consider a robot manipulator with n—links interconnected by joints into a kinematic
chain. Figure 1 shows a serial link (left) and a parallel link (right) manipulator. A parallel robot,
by definition, contains two or more independent serial link chains. For simplicity we shall confine

Figure 1.1: A serial manipulator (left), the ABB IRB1400, and a parallel manipulator (right), the
ABB IRB940Tricept. Photos courtesy of ABB Robotics.

our discussion to serial link manipulators with revolute or prismatic joints.
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2 CHAPTER 1. RAPID REVIEW OF KINEMATICS

Figure 2 shows a six degree-of-freedom, revolute joint robot. We define the joint variables,
q1, . . . , qn, as the relative angles between the links, for example, qi is the angle between link i and
link i− 1. A vector q = (q1, . . . , qn)T with each qi ∈ [0, 2π), is called a configuration. The set of
all possible configurations is called configuration space or joint space, which we denote as C.
The configuration space for a revolute joint robot is an n–dimensional torus, T n = S1 × · · · × S1,
where S1 is the unit circle.

The task space is the space of all positions and orientations (called poses) of the end–effector.
We attach a coordinate frame, called the base frame, or world frame, at the base of the robot
and a second frame, called the end–effector frame or task frame, at the end-effector. The
end–effector pose can then be described by specifying the amount of rotation and translation of
the task frame relative to the base frame. We show how to do this in the next section.

q1

q2 q3

q4

q5

q6

Rx

BASE FRAME TASK FRAME

Figure 1.2: A Serial Link Manipulator showing the attached Base Frame, Task Frame, and config-
uration variables.

1.2 Rigid Motions and Homogeneous Transformations

In order to represent the relative position and orientation of one rigid body with respect to another,
we can attach coordinate frames to each body, and then specify the geometric relationships between
these coordinate frames.

Definition 1 The Special Orthogonal Group of order 3, denoted SO(3), is the set of 3 × 3
matrices, R satisfying

RTR = I (1.1)
det(R) = 1 (1.2)

Elements of SO(3) are called Rotation Matrices. It is easy to show that SO(3) defines a
Non-Abelian Group. It follows from equations (1) and (2) that the columns (respectively, the
rows) of a rotation matrix are of unit length and mutually orthogonal. Referring to Figure 3, they
are, in fact, the direction cosines of frame 1 relative to frame 0.

Example: 1.1 Consider the frames shown in Figure 4. By inspection, we note that the x1, y1, z1
axes are in the direction of the −z0, −x0, and y0 axes, respectively. Therefore, the Rotation matrix,
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Figure 1.3: Two right hand coordinate frames with frame 1 rotated relative to frame 0

R1
0, relating these frames is given as

R1
0 =

 0 −1 0
0 0 1

−1 0 0

 (1.3)
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Figure 1.4: Example 0.1

1.2.1 Parameterizations of Rotations

The nine elements rij in a general rotational transformation R are not independent quantities.
Indeed a rigid body possesses at most three rotational degrees-of-freedom and thus at most three
quantities are required to specify its orientation. We define a set of basic rotation matrices, relative
to the coordinate axes, as follows

Rx,α =

 1 0 0
0 cα −sα
0 sα cα

 ; Ry,θ =

 cθ 0 sθ
0 1 0

−sθ 0 cθ

 ; Rz,ψ =

 cψ −sψ 0
sψ cψ 0
0 0 1

 (1.4)

Any element of SO(3) can then be represented as a product (non-uniquely) of basic rotation
matrices. So-called Euler Angles and Roll-Pitch-Yaw Angles are common ways to specify a
rotation matrix in terms of three independent quantities.
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Figure 1.5: Euler angle representation.

Example: 1.2 (Euler Angles)

Consider the fixed coordinate frame o0x0y0z0 and the rotated frame o1x1y1z1 shown in Figure 5.
We can specify the orientation of the frame o1x1y1z1 relative to the frame o0x0y0z0 by three angles
(φ, θ, ψ), known as Euler Angles, and obtained by three successive rotations as follows: First rotate
about the z-axis by the angle φ. Next rotate about the current y-axis by the angle θ. Finally
rotate about the current z-axis by the angle ψ. In Figure 5, frame oaxayaza represents the new
coordinate frame after the rotation by φ, frame obxbybzb represents the new coordinate frame after
the rotation by θ, and frame o1x1y1z1 represents the final frame, after the rotation by ψ. Frames
oaxayaza and obxbybzb are shown in the figure only to help you visualize the rotations.

In terms of the basic rotation matrices the resulting rotational transformation R0
1 can be gen-

erated as the product

R0
1 = Rz,φRy,θRz,ψ (1.5)

=

 cφ −sφ 0
sφ cφ 0
0 0 1


 cθ 0 sθ

0 1 0
−sθ 0 cθ


 cψ −sψ 0
sψ cψ 0
0 0 1


=

 cφcθcψ − sφsψ −cφcθsψ − sφcψ cφsθ
sφcθcψ + cφsψ −sφcθsψ + cφcψ sφsθ

−sθcψ sθsψ cθ

 . (1.6)

1.2.2 Inverse Euler Angles

Suppose U = (uij) ∈ SO(3) is given and R0
1 is the Euler angle transformation (5). The problem

then is to find the Euler angles φ, θ, ψ satisfying the matrix equation cφcθcψ − sφsψ −cφcθsψ − sφcψ cφsθ
sφcθcψ + cθsψ −sφcθsψ + cφcψ sφsθ

−sθ sθsψ cθ

 =

 u11 u12 u13

u21 u22 u23

u31 u32 u33

 . (1.7)

Suppose that not both of u13, u23 are zero. Then the above equation shows that sθ 6= 0, and
hence that not both of u31, u32 are zero. If not both u13 and u23 are zero, then u33 6= ±1, and we
have cθ = u33, sθ = ±

√
1− u2

33 so

θ = A tan
(
u33,

√
1− u2

33

)
(1.8)
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or

θ = A tan
(
u33,−

√
1− u2

33

)
. (1.9)

If we choose the first value for θ, then sθ > 0, and

φ = A tan(u13, u23) (1.10)
ψ = A tan(−u31, u32). (1.11)

If we choose the second value for θ, then sθ < 0, and

φ = A tan(−u13,−u23) (1.12)
ψ = A tan(u31,−u32). (1.13)

Thus there are two solutions depending on the sign chosen for θ.
If u13 = u23 = 0, then the fact that U is orthogonal implies that u33 = ±1, and that u31 =

u32 = 0. Thus U has the form

U =

 u11 u12 0
u21 u22 0
0 0 ±1.

 (1.14)

If u33 = 1, then cθ = 1 and sθ = 0, so that θ = 0. In this case (7) becomes cφcψ − sφsψ −cφsψ − sφcψ 0
sφcψ + cφsψ −sφsψ + cφcψ 0

0 0 1

 =

 cφ+ψ −sφ+ψ 0
sφ+ψ cφ+ψ 0

0 0 1

 =

 u11 u12 0
u21 u22 0
0 0 1

 (1.15)

Thus the sum φ+ ψ can be determined as

φ+ ψ = A tan(u11, u21) (1.16)
= A tan(u11,−u12).

Since only the sum φ + ψ can be determined in this case there are infinitely many solutions. We
may take φ = 0 by convention, and define ψ by (14). If u33 = −1, then cθ = −1 and sθ = 0, so
that θ = π. In this case (7) becomes −cφ−ψ −sφ−ψ 0

sφ−ψ cφ−ψ 0
0 0 1

 =

 u11 u12 0
u21 u22 0
0 0 −1

 . (1.17)

The solution is thus

φ− ψ = A tan(−u11,−u12) = A tan(−u21,−u22). (1.18)

As before there are infinitely many solutions.
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1.2.3 Homogeneous Transformations

Rigid motions includes translations in addition to rotation.

Definition 2 The Special Euclidean Group of order 3, SE(3), is then defined as

SE(3) = SO(3)×R3 (1.19)
= {(R, r) where R ∈ SO(3) and r ∈ R3} (1.20)

If we have the two rigid motions

p0 = R0
1p

1 + d0
1 (1.21)

and

p1 = R1
2p

2 + d1
2 (1.22)

then their composition defines a third rigid motion, which we can describe by substituting the
expression for p1 from (22) into (21)

p0 = R0
1R

1
2p

2 +R0
1d

1
2 + d0

1. (1.23)

Since the relationship between p0 and p2 is also a rigid motion, we can equally describe it as

p0 = R0
2p

2 + d0
2. (1.24)

Comparing Equations (23) and (24) we have the relationships

R0
2 = R0

1R
1
2 (1.25)

d0
2 = d0

1 +R0
1d

1
2. (1.26)

Equation (25) shows that the orientation transformations can simply be multiplied together and
Equation (26) shows that the vector from the origin o0 to the origin o2 has coordinates given by
the sum of d0

1 (the vector from o0 to o1 expressed with respect to o0x0y0z0) and R0
1d

1
2 (the vector

from o1 to o2, expressed in the orientation of the coordinate system o0x0y0z0).
A comparison of this with the matrix identity[

R0
1 d0

1

0 1

] [
R1

2 d2
1

0 1

]
=

[
R0

1R
1
2 R0

1d
2
1 + d0

1

0 1

]
(1.27)

where 0 denotes the row vector (0, 0, 0), shows that the rigid motions can be represented by the set
of matrices of the form

H =

[
R d
0 1

]
;R ∈ SO(3). (1.28)

Using the fact that R is orthogonal it is an easy exercise to show that the inverse transformation
H−1 is given by

H−1 =

[
RT −RTd
0 1

]
. (1.29)
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Transformation matrices of the form (28) are called homogeneous transformations. In order
to represent a rigid motion by a matrix multiplication, one needs to augment the vectors p0 and p1

by the addition of a fourth component of 1 as follows. Set

P 0 =

[
p0

1

]
(1.30)

P 1 =

[
p1

1

]
. (1.31)

The vectors P 0 and P 1 are known as homogeneous representations of the vectors p0 and p1,
respectively. It can now be seen directly that the rigid motion transformation is equivalent to the
(homogeneous) matrix equation

P 0 = H0
1P

1 (1.32)

The set of all 4×4 matricesH of the form (28) is denoted by E(3). A set of basic homogeneous
transformations generating E(3) is given by

Rotx,α =


1 0 0 0
0 cα −sα 0
0 sα cα 0
0 0 0 1

 ; Roty,θ =


cθ 0 sθ 0
0 1 0 0
−sθ 0 cθ 0
0 0 0 1



Rotz,ψ =


cψ −sψ 0 0
sψ cψ 0 0
0 0 1 0
0 0 0 1

 ; Transx,a =


1 0 0 a
0 1 0 0
0 0 1 0
0 0 0 1



Transy,b =


1 0 0 0
0 1 0 b
0 0 1 0
0 0 0 1

 ; Transz,c =


1 0 0 0
0 1 0 0
0 0 1 c
0 0 0 1


Example 1.3 The homogeneous transformation matrix H that represents a rotation of α degrees
about the current x-axis followed by a translation of b units along the current x-axis, followed by a
translation of d units along the current z-axis, followed by a rotation of θ degrees about the current
z-axis, is given by

H = Rotx,αTransx,bTransz,dRotz,θ (1.33)

=


1 0 0 0
0 cα −sα 0
0 sα cα 0
0 0 0 1




1 0 0 b
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 d
0 0 0 1



cθ −sθ 0 0
sθ cθ 0 0
0 0 1 0
0 0 0 1



=


cθ −sθ 0 b
cαsα cαcθ −sα −sαd
sαsθ sαcθ cα cαd

0 0 0 1

 .
�
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Figure 1.6: Coordinate frames attached to elbow manipulator.

1.3 Forward Kinematics

The forward kinematics problem is concerned with the relationship between the individual joints
of the robot manipulator and the position and orientation of the tool or end-effector. Stated more
formally, the forward kinematics problem is to determine the position and orientation of the end-
effector, given the values for the joint variables of the robot. The joint variables are the angles
between the links in the case of revolute or rotational joints, and the link extension in the case of
prismatic or sliding joints.

With the assumption that each joint has a single degree-of-freedom, the action of each joint
can be described by a single real number: the angle of rotation in the case of a revolute joint or
the displacement in the case of a prismatic joint. The objective of forward kinematic analysis is to
determine the cumulative effect of the entire set of joint variables.

A robot manipulator with n joints will have n+1 links, since each joint connects two links. We
number the joints from 1 to n, and we number the links from 0 to n, starting from the base. By this
convention, joint i connects link i− 1 to link i. We will consider the location of joint i to be fixed
with respect to link i− 1. When joint i is actuated, link i moves. Therefore, link 0 (the first link)
is fixed, and does not move when the joints are actuated. Of course the robot manipulator could
itself be mobile (e.g., it could be mounted on a mobile platform or on an autonomous vehicle),
but we will not consider this case in the present chapter, since it can be handled easily by slightly
extending the techniques presented here.

With the ith joint, we associate a joint variable, denoted by qi. In the case of a revolute joint,
qi is the angle of rotation, and in the case of a prismatic joint, qi is the joint displacement:

qi =

{
θi : joint i revolute
di : joint i prismatic

. (1.34)

To perform the kinematic analysis, we rigidly attach a coordinate frame to each link. In par-
ticular, we attach oixiyizi to link i. This means that, whatever motion the robot executes, the
coordinates of each point on link i are constant when expressed in the ith coordinate frame. Fur-
thermore, when joint i is actuated, link i and its attached frame, oixiyizi, experience a resulting
motion. The frame o0x0y0z0, which is attached to the robot base, is referred to as the inertial
frame. Figure 6 illustrates the idea of attaching frames rigidly to links in the case of an elbow
manipulator.
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Now suppose Ai is the homogeneous transformation matrix that expresses the position and
orientation of oixiyizi with respect to oi−1xi−1yi−1zi−1. The matrix Ai is not constant, but varies
as the configuration of the robot is changed. However, the assumption that all joints are either
revolute or prismatic means that Ai is a function of only a single joint variable, namely qi. In other
words,

Ai = Ai(qi). (1.35)

Now the homogeneous transformation matrix that expresses the position and orientation of ojxjyjzj
with respect to oixiyizi is denoted by T ij and is given by

T ij = Ai+1Ai+2 . . . Aj−1Aj if i < j

T ij = I if i = j (1.36)
T ij = (T ji )

−1 if j > i.

By the manner in which we have rigidly attached the various frames to the corresponding
links, it follows that the position of any point on the end-effector, when expressed in frame n, is
a constant independent of the configuration of the robot. Denote the position and orientation of
the end-effector with respect to the inertial or base frame by a three-vector o0

n (which gives the
coordinates of the origin of the end-effector frame with respect to the base frame) and the 3 × 3
rotation matrix R0

n, and define the homogeneous transformation matrix

H =

[
R0
n o0

n

0 1

]
. (1.37)

Then the position and orientation of the end-effector in the inertial frame are given by

H = T 0
n = A1(q1) · · ·An(qn). (1.38)

Each homogeneous transformation Ai is of the form

Ai =

[
Ri−1
i oi−1

i

0 1

]
. (1.39)

Hence

T ij = Ai+1 · · ·Aj =

[
Ri
j oij

0 1

]
. (1.40)

The matrix Ri
j expresses the orientation of ojxjyjzj relative to oixiyizi and is given by the

rotational parts of the A-matrices as

Ri
j = Ri

i+1 · · ·Rj−1
j . (1.41)

The coordinate vectors oij are given recursively by the formula

oij = oij−1 +Ri
j−1o

j−1

j , (1.42)

In principle, that is all there is to forward kinematics! Determine the functions Ai(qi), and
multiply them together as needed. However, it is possible to achieve a considerable amount of
streamlining and simplification by introducing further conventions, such as the Denavit-Hartenberg
representation of a joint, and this is the objective of the remainder of the chapter.
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Table 1.1: The four DH parameters.

ai: link length
αi: link twist
di: link offset
θi: joint angle

1.4 Denavit Hartenberg Representation

While it is possible to carry out all of the analysis in this chapter using an arbitrary frame attached
to each link, it is helpful to be systematic in the choice of these frames. A commonly used con-
vention for selecting frames of reference in robotic applications is the Denavit-Hartenberg, or D-H
convention. In this convention, each homogeneous transformation Ai is represented as a product
of four basic transformations

Ai = Rz,θi
Transz,diTransx,aiRx,αi

(1.43)

=


cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1




1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1



=


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1


where the four quantities θi, ai, di, αi are parameters associated with link i and joint i. The four
parameters ai, αi, di, and θi in (43) are generally given the names link length, link twist, link
offset, and joint angle, respectively. These names, summarized in Table 1, derive from specific
aspects of the geometric relationship between two coordinate frames, as will become apparent
below. Since the matrix Ai is a function of a single variable, it turns out that three of the above
four quantities are constant for a given link, while the fourth parameter, θi for a revolute joint and
di for a prismatic joint, is the joint variable.

We know that an arbitrary homogeneous transformation matrix can be characterized by six
numbers, such as, for example, three numbers to specify the fourth column of the matrix and
three Euler angles to specify the upper left 3 × 3 rotation matrix. In the D-H representation, in
contrast, there are only four parameters. How is this possible? The answer is that, while frame i is
required to be rigidly attached to link i, we have considerable freedom in choosing the origin and
the coordinate axes of the frame. For example, it is not necessary that the origin, oi, of frame i be
placed at the physical end of link i. In fact, it is not even necessary that frame i be placed within
the physical link; frame i could lie in free space — so long as frame i is rigidly attached to link i.
By a clever choice of the origin and the coordinate axes, it is possible to cut down the number of
parameters needed from six to four (or even fewer in some cases).

Now that we have established that each homogeneous transformation matrix satisfying condi-
tions (DH1) and (DH2) above can be represented in the form (43), we can in fact give a physical
interpretation to each of the four quantities in (43). The parameter a is the distance between the
axes z0 and z1, and is measured along the axis x1. The angle α is the angle between the axes z0
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and z1, measured in a plane normal to x1. The positive sense for α is determined from z0 to z1
by the right-hand rule as shown in Figure 7. The parameter d is the distance between the origin

xi

αi zi−1

θi

zi−1zi

xi−1

xi

Figure 1.7: Positive sense for αi and θi.

o0 and the intersection of the x1 axis with z0 measured along the z0 axis. Finally, θ is the angle
between x0 and x1 measured in a plane normal to z0. These physical interpretations will prove
useful in developing a procedure for assigning coordinate frames that satisfy the constraints (DH1)
and (DH2), and we now turn our attention to developing such a procedure.

1.4.1 Assigning the coordinate frames

For a given robot manipulator, one can always choose the frames 0, . . . , n in such a way that the
above two conditions are satisfied. In certain circumstances, this will require placing the origin
oi of frame i in a location that may not be intuitively satisfying, but typically this will not be
the case. In reading the material below, it is important to keep in mind that the choices of the
various coordinate frames are not unique, even when constrained by the requirements above. Thus,
it is possible that different engineers will derive differing, but equally correct, coordinate frame
assignments for the links of the robot. It is very important to note, however, that the end result
(i.e., the matrix T 0

n) will be the same, regardless of the assignment of intermediate link frames
(assuming that the coordinate frames for link n coincide). We will begin by deriving the general
procedure. We will then discuss various common special cases where it is possible to further simplify
the homogeneous transformation matrix.

To start, note that the choice of zi is arbitrary. By choosing αi and θi appropriately, we can
obtain any arbitrary direction for zi. Thus, for our first step, we assign the axes z0, . . . , zn−1 in
an intuitively pleasing fashion. Specifically, we assign zi to be the axis of actuation for joint i+ 1.
Thus, z0 is the axis of actuation for joint 1, z1 is the axis of actuation for joint 2, etc. There are
two cases to consider: (i) if joint i + 1 is revolute, zi is the axis of revolution of joint i + 1; (ii) if
joint i+ 1 is prismatic, zi is the axis of translation of joint i+ 1.

Once we have established the z-axes for the links, we establish the base frame. The choice of a
base frame is nearly arbitrary. We may choose the origin o0 of the base frame to be any point on
z0. We then choose x0, y0 in any convenient manner so long as the resulting frame is right-handed.
This sets up frame 0.

Once frame 0 has been established, we begin an iterative process in which we define frame i
using frame i − 1, beginning with frame 1. Figure 8 will be useful for understanding the process
that we now describe.
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Figure 1.8: Denavit-Hartenberg frame assignment.

In order to set up frame i it is necessary to consider three cases: (i) the axes zi−1, zi are not
coplanar, (ii) the axes zi−1, zi intersect (iii) the axes zi−1, zi are parallel. Note that in both cases
(ii) and (iii) the axes zi−1 and zi are coplanar. This situation is in fact quite common, as we will
see in Section 0.5. We now consider each of these three cases.

(i) zi−1 and zi are not coplanar: Consider the two lines li−1 and li that contain the axes
zi−1 and zi, respectively. If zi−l and zi are not coplanar, then there exists a unique line segment
perpendicular to both li−1 and li such that it connects both lines and it has minimum length.
The line containing this common normal to zi−1 and zi defines xi, and the point where this line
intersects zi is the origin oi. By construction, both conditions (DH1) and (DH2) are satisfied and
the vector from 0i−1 to oi is a linear combination of zi−1 and xi. The specification of frame i is
completed by choosing the axis yi to form a right-hand frame. Since assumptions (DH1) and (DH2)
are satisfied the homogeneous transformation matrix Ai is of the form (43).

(ii) zi−1 is parallel to zi: If the axes zi−1 and zi are parallel, then there are infinitely many
common normals between them and condition (DH1) does not specify xi completely. In this case
we are free to choose the origin oi anywhere along zi. One often chooses oi to simplify the resulting
equations. The axis xi is then chosen either to be directed from oi toward zi−1, along the common
normal, or as the opposite of this vector. A common method for choosing oi is to choose the normal
that passes through oi−1 as the xi axis; oi is then the point at which this normal intersects zi. In
this case, di would be equal to zero. Once xi is fixed, yi is determined, as usual by the right hand
rule. Since the axes zi−1 and zi are parallel, αi will be zero in this case.

(iii) zi−1 intersects zi: In this case xi is chosen normal to the plane formed by zi and zi−1. The
positive direction of xi is arbitrary. The most natural choice for the origin oi in this case is at the
point of intersection of zi and zi−1. However, any convenient point along the axis zi suffices. Note
that in this case the parameter ai equals 0.

This constructive procedure works for frames 0, . . . , n − l in an n-link robot. To complete the
construction, it is necessary to specify frame n. The final coordinate system onxnynzn is commonly
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referred to as the end-effector or tool frame (see Figure 9). The origin on is most often placed
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Figure 1.9: Tool frame assignment.

symmetrically between the fingers of the gripper. The unit vectors along the xn, yn, and zn axes
are labeled as n, s, and a, respectively. The terminology arises from fact that the direction a is
the approach direction, in the sense that the gripper typically approaches an object along the a
direction. Similarly the s direction is the sliding direction, the direction along which the fingers
of the gripper slide to open and close, and n is the direction normal to the plane formed by a and
s.

In all contemporary robots the final joint motion is a rotation of the end-effector by θn and
the final two joint axes, zn−1 and zn, coincide. Therefore the transformation between the final
two coordinate frames is always a translation along zn−1 by a distance d6 followed (or preceded)
by a rotation of θ6 radians about zn−1. This is an important observation which will simplify the
computation of the inverse kinematics in the next chapter.

Finally, note the following important fact. In all cases, whether the joint in question is revolute
or prismatic, the quantities ai and αi are always constant for all i and are characteristic of the
manipulator. If joint i is prismatic, then θi is also a constant, while di is the ith joint variable.
Similarly, if joint i is revolute, then di is constant and θi is the ith joint variable.

1.4.2 Summary

We may summarize the above procedure based on the D-H convention in the following algorithm
for deriving the forward kinematics for any manipulator.

Step l: Locate and label the joint axes z0, . . . , zn−1.

Step 2: Establish the base frame. Set the origin anywhere on the z0-axis. The x0 and y0 axes are
chosen conveniently to form a right-hand frame.

For i = 1, . . . , n− 1, perform Steps 3 to 5.

Step 3: Locate the origin oi where the common normal to zi and zi−1 intersects zi. If zi intersects
zi−1 locate oi at this intersection. If zi and zi−1 are parallel, locate oi in any convenient
position along zi.

Step 4: Establish xi along the common normal between zi−1 and zi through oi, or in the direction
normal to the zi−1 − zi plane if zi−1 and zi intersect.

Step 5: Establish yi to complete a right-hand frame.
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Table 1.2: Link parameters for 2-link planar manipulator.

Link ai αi di θi
1 a1 0 0 θ∗1
2 a2 0 0 θ∗2

∗ variable

Step 6: Establish the end-effector frame onxnynzn. Assuming the n-th joint is revolute, set zn = a
along the direction zn−1. Establish the origin on conveniently along zn, preferably at the center
of the gripper or at the tip of any tool that the manipulator may be carrying. Set yn = s
in the direction of the gripper closure and set xn = n as s × a. If the tool is not a simple
gripper set xn and yn conveniently to form a right-hand frame.

Step 7: Create a table of link parameters ai, di, αi, θi.

ai = distance along xi from oi to the intersection of the xi and zi−1 axes.

di = distance along zi−1 from oi−1 to the intersection of the xi and zi−1 axes. di is variable
if joint i is prismatic.

αi = the angle between zi−1 and zi measured about xi (see Figure 7).

θi = the angle between xi−1 and xi measured about zi−1 (see Figure 7). θi is variable if joint
i is revolute.

Step 8: Form the homogeneous transformation matrices Ai by substituting the above parameters
into (43).

Step 9: Form T 0
n = A1 · · ·An. This then gives the position and orientation of the tool frame

expressed in base coordinates.

1.5 Examples

In the D-H convention the only variable angle is θ, so we simplify notation by writing ci for cos θi,
etc. We also denote θ1 + θ2 by θ12, and cos(θ1 + θ2) by c12, and so on. In the following examples
it is important to remember that the D-H convention, while systematic, still allows considerable
freedom in the choice of some of the manipulator parameters. This is particularly true in the case
of parallel joint axes or when prismatic joints are involved.

Example 1.4 Planar Elbow Manipulator
Consider the two-link planar arm of Figure 10. The joint axes z0 and z1 are normal to the page.

We establish the base frame o0x0y0z0 as shown. The origin is chosen at the point of intersection
of the z0 axis with the page and the direction of the x0 axis is completely arbitrary. Once the base
frame is established, the o1x1y1z1 frame is fixed as shown by the D-H convention, where the origin
o1 has been located at the intersection of z1 and the page. The final frame o2x2y2z2 is fixed by
choosing the origin o2 at the end of link 2 as shown. The link parameters are shown in Table 2.
The A-matrices are determined from (43) as
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y0
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θ2

y1

y2
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Figure 1.10: Two-link planar manipulator. The z-axes all point out of the page, and are not shown
in the figure.

A1 =


c1 −s1 0 a1c1
s1 c1 0 a1s1
0 0 1 0
0 0 0 1

 . (1.44)

A2 =


c2 −s2 0 a2c2
s2 c2 0 a2s2
0 0 1 0
0 0 0 1

 (1.45)

The T -matrices are thus given by

T 0
1 = A1. (1.46)

T 0
2 = A1A2 =


c12 −s12 0 a1c1 + a2c12
s12 c12 0 a1s1 + a2s12
0 0 1 0
0 0 0 1

 . (1.47)

Notice that the first two entries of the last column of T 0
2 are the x and y components of the

origin o2 in the base frame; that is,

x = a1c1 + a2c12 (1.48)
y = a1s1 + a2s12

are the coordinates of the end-effector in the base frame. The rotational part of T 0
2 gives the

orientation of the frame o2x2y2z2 relative to the base frame.
�

Example 1.5 Three-Link Cylindrical Robot
Consider now the three-link cylindrical robot represented symbolically by Figure 11. We establish

o0 as shown at joint 1. Note that the placement of the origin o0 along z0 as well as the direction of
the x0 axis are arbitrary. Our choice of o0 is the most natural, but o0 could just as well be placed
at joint 2. The axis x0 is chosen normal to the page. Next, since z0 and z1 coincide, the origin o1
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Figure 1.11: Three-link cylindrical manipulator.

Table 1.3: Link parameters for 3-link cylindrical manipulator.

Link ai αi di θi
1 0 0 d1 θ∗1
2 0 −90 d∗2 0
3 0 0 d∗3 0

∗ variable

is chosen at joint 1 as shown. The x1 axis is normal to the page when θ1 = 0 but, of course its
direction will change since θ1 is variable. Since z2 and z1 intersect, the origin o2 is placed at this
intersection. The direction of x2 is chosen parallel to x1 so that θ2 is zero. Finally, the third frame
is chosen at the end of link 3 as shown.

The link parameters are now shown in Table 3. The corresponding A and T matrices are

A1 =


c1 −s1 0 0
s1 c1 0 0
0 0 1 d1

0 0 0 1

 (1.49)

A2 =


1 0 0 0
0 0 1 0
0 −1 0 d2

0 0 0 1



A3 =


1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1


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T 0
3 = A1A2A3 =


c1 0 −s1 −s1d3

s1 0 c1 c1d3

0 −1 0 d1 + d2

0 0 0 1

 . (1.50)

�

1.6 Inverse Kinematics

The general problem of inverse kinematics can be stated as follows. Given a 4 × 4 homogeneous
transformation

H =

[
R o
0 1

]
∈ E(3) (1.51)

with R ∈ SO(3), find (one or all) solutions of the equation

T 0
n(q1, . . . , qn) = H (1.52)

where

T 0
n(q1, . . . , qn) = A1 · · ·An. (1.53)

Here, H represents the desired position and orientation of the end-effector, and our task is to find
the values for the joint variables q1, . . . , qn so that T 0

n(q1, . . . , qn) = H.
Equation (52) results in twelve nonlinear equations in n unknown variables, which can be written

as

Tij(q1, . . . , qn) = hij , i = 1, 2, 3, j = 1, . . . , 4 (1.54)

where Tij , hij refer to the twelve nontrivial entries of T 0
n and H, respectively. (Since the bottom

row of both T 0
n and H are (0,0,0,1), four of the sixteen equations represented by (52) are trivial.)

1.6.1 Kinematic Decoupling

Although the general problem of inverse kinematics is quite difficult, it turns out that for manip-
ulators having six joints, with the last three joints intersecting at a point (such as the Stanford
Manipulator above), it is possible to decouple the inverse kinematics problem into two simpler
problems, known respectively, as inverse position kinematics, and inverse orientation kine-
matics. To put it another way, for a six-DOF manipulator with a spherical wrist, the inverse
kinematics problem may be separated into two simpler problems, namely first finding the posi-
tion of the intersection of the wrist axes, hereafter called the wrist center, and then finding the
orientation of the wrist.

For concreteness let us suppose that there are exactly six degrees-of-freedom and that the last
three joint axes intersect at a point Oc. We express (52) as two sets of equations representing the
rotational and positional equations

R0
6(q1, . . . , q6) = R (1.55)
o0
6(q1, . . . , q6) = o (1.56)

where o and R are the desired position and orientation of the tool frame, expressed with respect
to the world coordinate system. Thus, we are given o and R, and the inverse kinematics problem
is to solve for q1, . . . , q6.
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Now assumption of a spherical wrist means that the axes z4, z5, and z6 intersect at oc and hence
the origins o4 and o5 assigned by the DH-convention will always be at the wrist center oc. Often o3
will also be at oc, but this is not necessary for our subsequent development. The important point
of this assumption for the inverse kinematics is that motion of the final three links about these axes
will not change the position of oc. The position of the wrist center is thus a function of only the
first three joint variables. Since the origin of the tool frame (whose desired coordinates are given
by o) is simply obtained by a translation of distance d6 along z5 from oc we have

o = o0
c + d6R

 0
0
1

 . (1.57)

Recall that the third column of R expresses the direction of z6 with respect to the base frame, and
in our case, z5 and z6 are the same axis. Thus in order to have the end-effector of the robot at the
point with coordinates given by o and with the orientation of the end-effector given by R = (rij),
it is necessary and sufficient that the wrist center oc have coordinates given by

o0
c = o − d6R

 0
0
1

 . (1.58)

and that the orientation of the frame o6x6y6z6 with respect to the base be given by R. If the
components of the end-effector position o are denoted Ox, Oy, Oz and the components of the wrist
center o0

c are denoted xc, yc, zc then (58) gives the relationship xc
yc
zc

 =

 ox − d6r13

oy − d6r23

oz − d6r33

 . (1.59)

Using Equation (59) we may find the values of the first three joint variables. This determines
the orientation transformation R0

3 which depends only on these first three joint variables. We can
now determine the orientation of the end-effector relative to the frame o3x3y3z3 from the expression

R = R0
3R

3
6 (1.60)

as

R3
6 = (R0

3)
−1R = (R0

3)
TR. (1.61)

The final three joint angles can then be found as a set of Euler angles corresponding to R3
6.

Note that the right hand side of (61) is completely known since R is given and R0
3 can be calculated

once the first three joint variables are known. The idea of kinematic decoupling is illustrated in
Figure 12.

1.6.2 Summary

For this class of manipulators the determination of the inverse kinematics can be summarized by
the following algorithm.

Step 1: Find q1, q2, q3 such that the wrist center Oc has coordinates given by

o0
c = o − d6R

 0
0
1

 . (1.62)
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dc
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Figure 1.12: Kinematic decoupling.

Step 2: Using the joint variables determined in Step 1, evaluate R0
3.

Step 3: Find a set of Euler angles corresponding to the rotation matrix

R3
6 = (R0

3)
−1R = (R0

3)
TR. (1.63)

1.7 Inverse Position: A Geometric Approach

For the common kinematic arrangements that we consider, we can use a geometric approach to
find the variables, q1, q2, q3 corresponding to O0

c given by (58). We restrict our treatment to the
geometric approach for two reasons. First, as we have said, most present manipulator designs are
usually designed with a spherical wrist. Indeed, it is partly due to the difficulty of the general inverse
kinematics problem that manipulator designs have evolved to their present state. Second, there are
few techniques that can handle the general inverse kinematics problem for arbitrary configurations.
Since the reader is most likely to encounter robot configurations of the type considered here, the
added difficulty involved in treating the general case seems unjustified. The reader is directed to
the references at the end of the chapter for treatment of the general case.

In general the complexity of the inverse kinematics problem increases with the number of nonzero
link parameters. For most manipulators, many of the ai, di are zero, the αi are 0 or ±π/2, etc.
In these cases especially, a geometric approach is the simplest and most natural. We will illustrate
this with several important examples.

1.7.1 Articulated Configuration

Consider the elbow manipulator shown in Figure 13. With the components of O0
c denoted by

xc, yc, zc, we project Oc onto the x0 − y0 plane as shown in Figure 14. We see from this projection
that

θ1 = A tan(xc, yc), (1.64)
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Figure 1.13: Elbow manipulator.
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Figure 1.14: Projection of the wrist center onto x0 − y0 plane.

in which A tan(x, y) denotes the two argument arctangent function. A tan(x, y) is defined for all
(x, y) 6= (0, 0) and equals the unique angle θ such that

cos θ =
x

(x2 + y2)
1
2

, sin θ =
y

(x2 + y2)
1
2

. (1.65)

For example, A tan(1,−1) = −π
4 , while A tan(−1, 1) = +3π

4 .
Note that a second valid solution for θ1 is

θ1 = π +A tan(xc, yc) (1.66)

provided that the solution θ2 corresponding to (64) is replaced by π − θ2.
These solutions for θ1, are valid unless xc = yc = 0. In this case (64) is undefined and the

manipulator is in a singular configuration, shown in Figure 15. In this position the wrist center Oc
intersects z0; hence any value of θ1 leaves Oc fixed. There are thus infinitely many solutions for θ1
when Oc intersects z0.

To find the angles θ2, θ3 for the elbow manipulator, given θ1, we consider the plane formed by
the second and third links as shown in Figure 16. Since the motion of links two and three is planar,
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Figure 1.15: Singular configuration.
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Figure 1.16: Projecting onto the plane formed by links 2 and 3.

the solution is analogous to that of the two-link manipulator and we obtain

cos θ3 =
r2 + s2 − a2

2 − a2
3

2a2a3
(1.67)

=
x2
c + y2

c − d2 + z2
c − a2

2 − a2
3

2a2a3
:= D,

since r2 = x2
c + y2

c − d2 and s = zc. Hence, θ3 is given by

θ3 = A tan
(
D,±

√
1−D2

)
. (1.68)

Similarly θ2 is given as

θ2 = A tan(r, s)−A tan(a2 + a3c3, a3s3) (1.69)

= A tan
(√

x2
c + y2

c − d2, zc

)
−A tan(a2 + a3c3, a3s3).
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Figure 1.17: Four solutions of the inverse position kinematics for the PUMA manipulator.

The two solutions for θ3 correspond to the elbow-up position and elbow-down position, respectively.
An example of an elbow manipulator with offsets is the PUMA shown in Figure 17. There are

four solutions to the inverse position kinematics as shown. These correspond to the situations left
arm-elbow up, left arm–elbow down, right arm–elbow up and right arm–elbow down. We will see
that there are two solutions for the wrist orientation thus giving a total of eight solutions of the
inverse kinematics for the PUMA manipulator.

1.8 Jacobians

Definition 3 A matrix S is said to be skew symmetric if and only if

ST + S = 0. (1.70)

Suppose that a rotation matrix R is time varying, so that R = R(t) ∈ SO(3) for every t ∈ IR.
It is easily shown that the time derivative Ṙ(t) of R(t) is given by

Ṙ(t) = S(t)R(t) (1.71)

where the matrix S(t) is skew symmetric. Now, since S(t) is skew symmetric, it can be represented
as S(ω(t)) for a unique vector ω(t). This vector ω(t) is the angular velocity of the rotating frame
with respect to the fixed frame at time t. Thus, the time derivative Ṙ(t) is given by

Ṙ(t) = S(ω(t))R(t) (1.72)

in which ω(t) is the angular velocity.
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1.9 Linear Velocity of a Point Attached to a Moving Frame

We now consider the linear velocity of a point that is rigidly attached to a moving frame. Suppose
the point p is rigidly attached to the frame o1x1y1z1, and that o1x1y1z1 is rotating relative to the
frame o0x0y0z0. Then the coordinates of p with respect to the frame o0x0y0z0 are given by

p0 = R0
1(t)p

1. (1.73)

The velocity ṗ0 is then given as

ṗ0 = Ṙ0
1(t)p

1 +R0
1(t)ṗ

1 (1.74)
= S(ω0)R0

1(t)p
1 (1.75)

= S(ω0)p0 = ω0 × p0

which is the familiar expression for the velocity in terms of the vector cross product. Note that (75)
follows from that fact that p is rigidly attached to frame o1x1y1z1, and therefore its coordinates
relative to frame o1x1y1z1 do not change, giving ṗ1 = 0.

Now suppose that the motion of the frame o1x1y1z1 relative to o0x0y0z0 is more general. Suppose
that the homogeneous transformation relating the two frames is time-dependent, so that

H0
1 (t) =

[
R0

1(t) o0
1(t)

0 1

]
. (1.76)

For simplicity we omit the argument t and the subscripts and superscripts on R0
1 and o0

1, and
write

p0 = Rp1 + o. (1.77)

Differentiating the above expression using the product rule gives

ṗ0 = Ṙp1 + Ȯ (1.78)
= S(ω)Rp1 + Ȯ

= ω × r + v

where r = Rp1 is the vector from O1 to p expressed in the orientation of the frame o0x0y0z0, and
v is the rate at which the origin O1 is moving.

If the point p is moving relative to the frame o1x1y1z1, then we must add to the term v the
term R(t)ṗ1, which is the rate of change of the coordinates p1 expressed in the frame o0x0y0z0.

1.10 Derivation of the Jacobian

Consider an n-link manipulator with joint variables q1, . . . , qn . Let

T 0
n(q) =

[
R0
n(q) o0

n(q)
0 1

]
(1.79)

denote the transformation from the end-effector frame to the base frame, where q = (q1, . . . , qn)T

is the vector of joint variables. As the robot moves about, both the joint variables qi and the
end-effector position o0

n and orientation R0
n will be functions of time. The objective of this section
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is to relate the linear and angular velocity of the end-effector to the vector of joint velocities q̇(t).
Let

S(ω0
n) = Ṙ0

n(R
0
n)
T (1.80)

define the angular velocity vector ω0
n of the end-effector, and let

v0
n = Ȯ0

n (1.81)

denote the linear velocity of the end effector. We seek expressions of the form

v0
n = Jvq̇ (1.82)
ω0
n = Jωq̇ (1.83)

where Jv and Jω are 3× n matrices. We may write (82) and (83) together as[
v0
n

ω0
n

]
= J0

nq̇ (1.84)

where J0
n is given by

J0
n =

[
Jv
Jω

]
. (1.85)

The matrix J0
n is called the Manipulator Jacobian or Jacobian for short. Note that J0

n is a
6× n matrix where n is the number of links. We next derive a simple expression for the Jacobian
of any manipulator.

1.10.1 Angular Velocity

We can determine the angular velocity of the end-effector relative to the base by expressing the
angular velocity contributed by each joint in the orientation of the base frame and then summing
these.

If the i-th joint is revolute, then the i-th joint variable qi equals θi and the axis of rotation is
zi−1. Following the convention that we introduced above, let ωi−1

i represent the angular velocity of
link i that is imparted by the rotation of joint i, expressed relative to frame oi−1xi−1yi−1zi−1. This
angular velocity is expressed in the frame i− 1 by

ωi−1

i = q̇iz
i−1

i−1 = q̇ik (1.86)

in which, as above, k is the unit coordinate vector (0, 0, 1)T .
If the i-th joint is prismatic, then the motion of frame i relative to frame i− 1 is a translation

and

ωi−1

i = 0. (1.87)

Thus, if joint i is prismatic, the angular velocity of the end-effector does not depend on qi, which
now equals di.

Therefore, the overall angular velocity of the end-effector, ω0
n, in the base frame is determined

as

ω0
n = ρ1q̇1k + ρ2q̇2R

0
1k + · · ·+ ρnq̇nR

0
n−1k (1.88)

=
n∑
i−1

ρiq̇iz
0
i−1
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in which ρi is equal to 1 if joint i is revolute and 0 if joint i is prismatic, since

z0
i−1 = R0

i−1k. (1.89)

Of course z0
0 = k = (0, 0, 1)T .

The lower half of the Jacobian Jω, in (85) is thus given as

Jω = [ρ1z0 · · · ρnzn−1] . (1.90)

Note that in this equation, we have omitted the superscripts for the unit vectors along the z-axes,
since these are all referenced to the world frame. In the remainder of the chapter we will follow
this convention when there is no ambiguity concerning the reference frame.

1.10.2 Linear Velocity

The linear velocity of the end-effector is just Ȯ0
n. By the chain rule for differentiation

Ȯ0
n =

n∑
i=1

∂o0
n

∂qi
q̇i. (1.91)

Thus we see that the i-th column of Jv, which we denote as Jvi is given by

Jvi =
∂o0

n

∂qi
. (1.92)

Furthermore this expression is just the linear velocity of the end-effector that would result if q̇i were
equal to one and the other q̇j were zero. In other words, the i-th column of the Jacobian can be
generated by holding all joints fixed but the i-th and actuating the i-th at unit velocity. We now
consider the two cases (prismatic and revolute joints) separately.

(i) Case 1: Prismatic Joints

If joint i is prismatic, then it imparts a pure translation to the end-effector. In this case the T 0
n can

be written as the product of three transformations as follows

[
R0
n o0

n

0 1

]
= T 0

n (1.93)

= T 0
i−1T

i−1
i T in (1.94)

=

[
R0
i−1 o0

i−1

0 1

] [
Ri−1
i oi−1

i

0 1

] [
Ri
n oin

0 1

]
(1.95)

=

[
R0
n R0

io
i
n +R0

i−1o
i−1

i + o0
i−1

0 1

]
, (1.96)

which gives

o0
n = R0

io
i
n +R0

i−1o
i−1

i + o0
i−1. (1.97)

If only joint i is allowed to move, then both of oin and o0
i−1 are constant. Furthermore, if joint

i is prismatic, then the rotation matrix R0
i−1 is also constant (again, assuming that only joint i
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is allowed to move). Finally, recall that, by the DH convention, oi−1

i = (aici, aisi, di)T . Thus,
differentiation of o0

n gives

∂o0
n

∂qi
=

∂

∂di
R0
i−1o

i−1

i (1.98)

= R0
i−1

∂

∂di

 aici
aisi
di

 (1.99)

= ḋiR
0
i−1

 0
0
1

 (1.100)

= ḋiz
0
i−1, (1.101)

in which di is the joint variable for prismatic joint i. Thus, (again, dropping the zero superscript
on the z-axis) for the case of prismatic joints we have

Jvi = zi−1. (1.102)

(ii) Case 2: Revolute Joints

If joint i is revolute, then we have qi = θi. Starting with (97), and letting qi = θi, since R0
i is not

constant with respect to θi, we obtain

∂

∂θi
o0
n =

∂

∂θi

[
R0
io
i
n +R0

i−1o
i−1

i

]
(1.103)

=
∂

∂θi
R0
io
i
n +R0

i−1

∂

∂θi
oi−1

i (1.104)

= θ̇iS(z0
i−1)R

0
io
i
n + θ̇iS(z0

i−1)R
0
i−1o

i−1

i (1.105)

= θ̇iS(z0
i−1)

[
R0
io
i
n +R0

i−1o
i−1

i

]
(1.106)

= θ̇iS(z0
i−1)(o

0
n − o0

i−1) (1.107)

= θ̇iz
0
i−1 × (o0

n − o0
i−1). (1.108)

The second term in (105) is derived as follows:

R0
i−1

∂

∂θi

 aici
aisi
di

 = R0
i−1

 −aisi
aici
0

 θ̇i (1.109)

= R0
i−1S(kθ̇i)oi−1

i (1.110)

= R0
i−1S(kθ̇i)

(
R0
i−1

)T
R0
i−1o

i−1

i (1.111)

= S(R0
i−1kθ̇i)R

0
i−1o

i−1

i (1.112)

= θ̇iS(z0
i−1)R

0
i−1o

i−1

i . (1.113)

Equation (110) follows by straightforward computation. Thus

Jvi = zi−1 × (On −Oi−1), (1.114)

in which we have, following our convention, omitted the zero superscripts. Figure 18 illustrates a
second interpretation of (114). As can be seen in the figure, On − Oi−1 = r and zi−1 = ω in the
familiar expression v = ω × r.
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Oi−1

y0

x0

z0

On

θi

d0
i−1

r ≡ di−1
n

ω ≡ zi−1

Figure 1.18: Motion of the end-effector due to link i.

Combining the Angular and Linear Jacobians

As we have seen in the preceding section, the upper half of the Jacobian Jv is given as

Jv = [Jv1 · · ·Jvn ] (1.115)

where the i-th column Jvi is

Jvi = zi−1 × (On −Oi−1) (1.116)

if joint i is revolute and

Jvi = zi−1 (1.117)

if joint i is prismatic.
The lower half of the Jacobian is given as

Jω = [Jω1 · · ·Jωn ] (1.118)

where the i-th column Jωi is

Jωi = zi−1 (1.119)

if joint i is revolute and

Jωi = 0 (1.120)

if joint i is prismatic.
Now putting the upper and lower halves of the Jacobian together we have shown that the

Jacobian for an n-link manipulator is of the form

J = [J1J2 · · ·Jn] (1.121)

where the i-th column Ji is given by

Ji =

[
zi−1 × (On −Oi−1)

zi−1

]
(1.122)
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if joint i is revolute and

Ji =

[
zi−1

0

]
(1.123)

if joint i is prismatic.
The above formulas make the determination of the Jacobian of any manipulator simple since

all of the quantities needed are available once the forward kinematics are worked out. Indeed the
only quantities needed to compute the Jacobian are the unit vectors zi and the coordinates of the
origins O1, . . . , On. A moment’s reflection shows that the coordinates for zi w.r.t. the base frame
are given by the first three elements in the third column of T 0

i while Oi is given by the first three
elements of the fourth column of T 0

i . Thus only the third and fourth columns of the T matrices
are needed in order to evaluate the Jacobian according to the above formulas.

1.11 Examples

Example 1.6 Consider the two-link planar manipulator of Example 0.4. Since both joints are
revolute the Jacobian matrix, which in this case is 6× 2, is of the form

J(q) =

[
z0 × (O2 −O0) z1 × (O2 −O1)

z0 z1

]
. (1.124)

The various quantities above are easily seen to be

O0 =

 0
0
0

 O1 =

 a1c1
a1s1

0

 O2 =

 a1c1 + a2c12
a1s1 + a2s12

0

 (1.125)

z0 = z1 =

 0
0
1

 . (1.126)

Performing the required calculations then yields

J =



−a1s1 − a2s12 −a2s12

a1c1 + a2c12 a2c12

0 0
0 0
0 0
1 1


. (1.127)

�
Example 1.7 SCARA Manipulator We will now derive the Jacobian of the SCARA ma-
nipulator of Example 3.3.6. This Jacobian is a 6 × 4 matrix since the SCARA has only four
degrees-of-freedom. As before we need only compute the matrices T 0

j = A1 . . . Aj.
Since joints 1,2, and 4 are revolute and joint 3 is prismatic, and since O4 −O3 is parallel to z3

(and thus, z3 × (O4 −O3) = 0), the Jacobian is of the form

J =

[
z0 × (O4 −O0) z1 × (O4 −O1) z2 0

z0 z1 0 z3

]
. (1.128)
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Performing the indicated calculations, one obtains

O1 =

 a1c1
a1s1

0

 O2 =

 a1c1 + a2c12
a1s1 + a2s12

0

 (1.129)

O4 =

 a1c1 + a2c12

a1s2 + a2s12

d3 − d4

 . (1.130)

Similarly z0 = z1 = k, and z2 = z3 = −k. Therefore the Jacobian of the SCARA Manipulator
is

J =



−a1s1 − a2s12 −a2s12 0 0
a1c1 + a2c12 a2c12 0 0

0 0 −1 0
0 0 0 0
0 0 0 0
1 1 0 −1


. (1.131)

�

1.12 Singularities

The 6× n Jacobian J(q) defines a mapping

Ẋ = J(q)q̇ (1.132)

between the vector q̇ of joint velocities and the vector Ẋ = (v,ω)T of end-effector velocities.
Infinitesimally this defines a linear transformation

dX = J(q)dq (1.133)

between the differentials dq and dX. These differentials may be thought of as defining directions
in IR6, and IRn, respectively.

Since the Jacobian is a function of the configuration q, those configurations for which the rank
of J decreases are of special significance. Such configurations are called singularities or singular
configurations. Identifying manipulator singularities is important for several reasons.

1. Singularities represent configurations from which certain directions of motion may be unattain-
able.

2. At singularities, bounded end-effector velocities may correspond to unbounded joint velocities.

3. At singularities, bounded end-effector forces and torques may correspond to unbounded joint
torques.

4. Singularities usually (but not always) correspond to points on the boundary of the manipulator
workspace, that is, to points of maximum reach of the manipulator.

5. Singularities correspond to points in the manipulator workspace that may be unreachable under
small perturbations of the link parameters, such as length, offset, etc.

6. Near singularities there will not exist a unique solution to the inverse kinematics problem. In
such cases there may be no solution or there may be infinitely many solutions.
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1.12.1 Decoupling of Singularities

We have seen that a set of forward kinematic equations can be derived for any manipulator by
attaching a coordinate frame rigidly to each link in any manner that we choose, computing a set
of homogeneous transformations relating the coordinate frames, and multiplying them together as
needed. The D-H convention is merely a systematic way to do this. Although the resulting equations
are dependent on the coordinate frames chosen, the manipulator configurations themselves are
geometric quantities, independent of the frames used to describe them. Recognizing this fact allows
us to decouple the determination of singular configurations, for those manipulators with spherical
wrists, into two simpler problems. The first is to determine so-called arm singularities, that is,
singularities resulting from motion of the arm, which consists of the first three or more links, while
the second is to determine the wrist singularities resulting from motion of the spherical wrist.

For the sake of argument, suppose that n = 6, that is, the manipulator consists of a 3-DOF
arm with a 3-DOF spherical wrist. In this case the Jacobian is a 6× 6 matrix and a configuration
q is singular if and only if

det J(q) = 0. (1.134)

If we now partition the Jacobian J into 3× 3 blocks as

J = [JP | JO] =

[
J11

J21

J12

J22

]
(1.135)

then, since the final three joints are always revolute

JO =

[
z3 × (O6 −O3) z4 × (O6 −O4) z5 × (O6 −O5)

z3 z4 z5

]
. (1.136)

Since the wrist axes intersect at a common point O, if we choose the coordinate frames so that
O3 = O4 = O5 = O6 = O, then JO becomes

JO =

[
0 0 0
z3 z4 z5

]
(1.137)

and the i-th column Ji of Jp is

Ji =

[
zi−1 × (O −Oi−1)

zi−1

]
(1.138)

if joint i is revolute and

Ji =

[
zi−1

0

]
(1.139)

if joint i is prismatic. In this case the Jacobian matrix has the block triangular form

J =

[
J11 0
J21 J22

]
(1.140)

with determinant

det J = det J11 det J22 (1.141)
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where J11 and J22 are each 3 × 3 matrices. J11 has i-th column zi−1 × (O − Oi−1) if joint i is
revolute, and zi−1 if joint i is prismatic, while

J22 = [z3 z4 z5]. (1.142)

Therefore the set of singular configurations of the manipulator is the union of the set of arm
configurations satisfying det J11 = 0 and the set of wrist configurations satisfying detJ22 = 0. Note
that this form of the Jacobian does not necessarily give the correct relation between the velocity
of the end-effector and the joint velocities. It is intended only to simplify the determination of
singularities.

1.12.2 Wrist Singularities

We can now see from (142) that a spherical wrist is in a singular configuration whenever the vectors
z3, z4 and z5 are linearly dependent. Referring to Figure 19 we see that this happens when the

z4

θ6θ4

θ5 = 0

z3 z5

Figure 1.19: Spherical wrist singularity.

joint axes z3 and z5 are collinear. In fact, whenever two revolute joint axes anywhere are collinear,
a singularity results since an equal and opposite rotation about the axes results in no net motion
of the end-effector. This is the only singularity of the spherical wrist, and is unavoidable without
imposing mechanical limits on the wrist design to restrict its motion in such a way that z3 and z5
are prevented from lining up.

1.12.3 Arm Singularities

In order to investigate arm singularities we need only to compute J11 according to (138) and (139),
which is the same formula derived previously with the wrist center O in place of O6.

Example 1.8 Elbow Manipulator Singularities � Consider the three-link articulated ma-
nipulator with coordinate frames attached as shown in Figure 20. It is left as an exercise to show
that

J11 =

 −a2s1c2 − a3s1c23 −a2s2c1 − a3s23c1 −a3c1s23
a2c1c2 + a3c1c23 −a2s1s2 − a3s1s23 −a3s1s23

0 a2c2 + a3c23 a3c23

 (1.143)

and that the determinant of J11 is

det J11 = a2a3s3(a2c2 + a3c23). (1.144)

We see from (144) that the elbow manipulator is in a singular configuration whenever

s3 = 0, that is, θ3 = 0 or π (1.145)
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z2

x0

z0

x1 x2

z1

y1 y2

y0

Oc

d0
c

Figure 1.20: Elbow manipulator.

and whenever

a2c2 + a3c23 = 0. (1.146)

The situation of (145) is shown in Figure 21 and arises when the elbow is fully extended or fully

θ3 = 0◦ θ3 = 180◦

Figure 1.21: Elbow singularities of the elbow manipulator.

retracted as shown. The second situation (146) is shown in Figure 22. This configuration occurs
when the wrist center intersects the axis of the base rotation, z0.

1.13 Summary

The forward kinematics map is a function

X0 =

(
x(q)
R(q)

)
= f0(q) : T n → SE(3) (1.147)

from configuration space to task space which gives the end–effector pose in terms of the joint
configuration. The inverse kinematics map gives the joint configuration as a function of the
end–effector pose. The forward kinematics map is many–to–one, so that several joint space con-
figurations may give rise to the same end–effector pose. This means that the forward kinematics
always has a unique pose for each configuration, while the inverse kinematics has multiple solutions,
in general.

The kinematics problem is compounded by the difficulty of parametrizing the rotation group,
SO(3). It is well–known that there does not exist a minimal set of coordinates to “cover” SO(3),
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z0

θ1

Figure 1.22: Singularity of the elbow manipulator with no offsets.

i.e., a single set of three variables to represent all orientations in SO(3) uniquely. The most common
representations used are Euler angles and quaternions. Representational singularities, which
are points at which the representation fails to be unique, give rise to a number of computational
difficulties in motion planning and control.

Given a minimal representation for SO(3), for example, a set of Euler angles φ, θ, ψ, the forward
kinematics map may also be defined by a function

X1 =

(
x(q)
o(q)

)
= f1(·) : T n → <6 (1.148)

where x(q) ∈ <3 gives the Cartesian position of the end–effector and o(q) = (φ(q), θ(q), ψ(q))T

represents the orientation of the end–effector. The non–uniqueness of the inverse kinematics in
this case will include multiplicities due to the particular representation of SO(3) in addition to
multiplicities intrinsic to the geometric structure of the manipulator.

Velocity kinematics refers to the relationship between the joint velocities and the end–effector
velocities. If the mapping f0 from (147) is used to represent the forward kinematics, then the
velocities are given by

V =

(
v
ω

)
= J0(q)q̇ (1.149)

where J0(q) is a 6× n matrix, called the manipulator Jacobian. The vectors v and ω represent
the linear and angular velocity, respectively, of the end–effector. The linear velocity v ∈ <3 is just
d
dtx(q), where x(q) is the end–effector position vector from (147). It is a little more difficult to see
how the angular velocity vector ω is computed since the end–effector orientation in (147) is specified
by a matrix R ∈ SO(3). If ω = (ωx, ωy, ωz)T is a vector in <3, we may define a skew–symmetric
matrix, S(ω), according to

S(ω) =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 . (1.150)
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The set of all skew–symmetric matrices is denoted by so(3). Now, if R(t) belongs to SO(3) for all
t, it can be shown that

Ṙ = S(ω(t))R (1.151)

for a unique vector ω(t). The vector ω(t) thus defined is the angular velocity of the end–effector
frame relative to the base frame.

If the mapping f1 is used to represent the forward kinematics, then the velocity kinematics is
written as

Ẋ1 = J1(q)q̇ (1.152)

where J1(q) = ∂f1/∂q is the 6×n Jacobian of the function f1. In the sequel we will use J to denote
either the matrix J0 or J1.


